新东方网为大家带来2020托福听力练习:蝙蝠免疫力抗击埃博拉病毒(下载),希望对大家有所帮助!更多内容请随时关注新东方网!
When a virus invades your cells, it kicks your immune machinery into motion.
The first responders are signaling proteins, called interferons.
And they trigger downstream immune responses.
So you can kind of think of them as the hormones of the immune system.
They're triggered and then they stimulate a bunch of other immune responses that are more specific to that pathogen.
Michelle Baker, a comparative immunologist at the Australian Animal Health Laboratory.
In the spirit of comparative immunology, Baker and her colleagues looked at how another mammal—the black flying fox, a type of bat—handles infections.
They sequenced its immunity genes, and observed the immune response in normal bat cells.
And they found that, unlike us—the bats always have interferons on patrol.
Meaning the proteins do not wait to be activated by invaders.
And the researchers say that this constant state of high alert may be why bats can carry Ebola, Nipah virus, and a whole lot of other infections with no symptoms at all.
The findings appear in the Proceedings of the National Academy of Sciences.
So why not switch on those interferons 24/7 in humans?
Well in us, they also tend to cause lots of inflammation and cell damage.
Like the symptoms you feel from the flu—a lot of that is your immune system's fault.
But the key might be to do as the bats do.
"If we can just skew the response of our immune system so it triggers an antiviral response without the pro-inflammatory effects, then we might have something we can work with in terms of a novel therapeutic for humans."
Bats have long been known to harbor disease.
So it would be fitting if they also taught us how to fight it.
翻译见下页
When a virus invades your cells, it kicks your immune machinery into motion. 当病毒入侵你的细胞,免疫系统开始工作。
The first responders are signaling proteins, called interferons. 首先起作用的就是信号蛋白,它也被称为干扰素。
And they trigger downstream immune responses. 而它会触发下游免疫反应。
So you can kind of think of them as the hormones of the immune system. 因此你可以把它们想象成免疫系统的荷尔蒙。
They're triggered and then they stimulate a bunch of other immune responses that are more specific to that pathogen. 免疫系统开始工作后,就会刺激一系列针对病原体更具体的其他免疫反应。
Michelle Baker, a comparative immunologist at the Australian Animal Health Laboratory. 米歇尔.贝克尔是澳大利亚动物卫生实验室的比较免疫学家。
In the spirit of comparative immunology, Baker and her colleagues looked at how another mammal-the black flying fox, a type of bat-handles infections. 本着比较免疫学理论,贝克尔和她的同事们对其它哺乳动物蝙蝠的一种,黑狐蝠应对感染的方式进行了观察。
They sequenced its immunity genes, and observed the immune response in normal bat cells. 研究人员对免疫基因进行了排序,并观察了正常蝙蝠细胞的免疫反应。
And they found that, unlike us-the bats always have interferons on patrol. 而结果他们发现,与我们人类所不同的是,蝙蝠体内的干扰素一直在起作用。
Meaning the proteins do not wait to be activated by invaders. 这代表着蛋白质不需要等待入侵后才开始激活。
And the researchers say that this constant state of high alert may be why bats can carry Ebola, Nipah virus, and a whole lot of other infections with no symptoms at all. 而研究人员称这种持续的高警戒状态可能是蝙蝠携带埃博拉病毒、尼帕病毒及其它感染性疾病但却没有出现任何症状的原因。
The findings appear in the Proceedings of the National Academy of Sciences. 这项研究已在《美国国家科学院院刊》上发表。
So why not switch on those interferons 24/7 in humans? 那为何不激活人体内的干扰素呢?
Well in us, they also tend to cause lots of inflammation and cell damage. 对人类的身体而言,这样会引起大量炎症并造成细胞损伤。
Like the symptoms you feel from the flu-a lot of that is your immune system's fault. 免疫系统缺失就像感染流感病毒一样。
But the key might be to do as the bats do. 但关键在于我们如何模仿蝙蝠。
If we can just skew the response of our immune system so it triggers an antiviral response without the pro-inflammatory effects, then we might have something we can work with in terms of a novel therapeutic for humans. 如果我们只是让自身免疫系统发生偏差,这样就可以在没有任何炎症的情况下抗击病毒,因此我们可以利用这种新方法治疗人类疾病。
Bats have long been known to harbor disease. 一直以来人类就知晓,蝙蝠可以免疫于疾病。
So it would be fitting if they also taught us how to fight it. 因此如果我们通过这些小动物学会怎样抗击疾病,那就再好不过了。
以上是新东方网为大家带来的2020托福听力练习:蝙蝠免疫力抗击埃博拉病毒(下载),希望认真积极的备考,早日取得优异的成绩。更多内容请随时关注新东方网!
最新热文推荐:
更详细的内容请点击:2020软科世界一流学科排名发布